Nitrogen trace gas emissions from a riparian ecosystem in southern Appalachia.

نویسندگان

  • John T Walker
  • Christopher D Geron
  • James M Vose
  • Wayne T Swank
چکیده

In this paper, we present two years of seasonal nitric oxide (NO), ammonia (NH3), and nitrous oxide (N2O) trace gas fluxes measured in a recovering riparian zone with cattle excluded and adjacent riparian zone grazed by cattle. In the recovering riparian zone, average NO, NH3, and N2O fluxes were 5.8, 2.0, and 76.7 ng N m(-2) S(-1) (1.83, 0.63, and 24.19 kg N ha(-1) y(-1)), respectively. Fluxes in the grazed riparian zone were larger, especially for NO and NH3, measuring 9.1, 4.3, and 77.6 ng N m(-2) S(-1) (2.87, 1.35, and 24.50 kg N ha(-1) y(-1)) for NO, NH3, and N2O, respectively. On average, N2O accounted for greater than 85% of total trace gas flux in both the recovering and grazed riparian zones, though N2O fluxes were highly variable temporally. In the recovering riparian zone, variability in seasonal average fluxes was explained by variability in soil nitrogen (N) concentrations. Nitric oxide flux was positively correlated with soil ammonium (NH4+) concentration, while N2O flux was positively correlated with soil nitrate (NO3-) concentration. Ammonia flux was positively correlated with the ratio of NH4+ to NO3-. In the grazed riparian zone, average NH3 and N2O fluxes were not correlated with soil temperature, N concentrations, or moisture. This was likely due to high variability in soil microsite conditions related to cattle effects such as compaction and N input. Nitric oxide flux in the grazed riparian zone was positively correlated with soil temperature and NO3- concentration. Restoration appeared to significantly affect NO flux, which increased approximately 600% during the first year following restoration and decreased during the second year to levels encountered at the onset of restoration. By comparing the ratio of total trace gas flux to soil N concentration, we show that the restored riparian zone is likely more efficient than the grazed riparian zone at diverting upper-soil N from the receiving stream to the atmosphere. This is likely due to the recovery of microbiological communities following changes in soil physical characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Areas of residential development in the southern Appalachian Mountains are characterized by low riparian zone nitrogen cycling and no increase in soil greenhouse gas emissions

The critical role streamside riparian zones play in mitigating the movement of nitrogen (N) and other elements from terrestrial to aquatic ecosystems could be threatened by residential development in the southern Appalachian Mountains. Many studies have investigated the influence of agriculture on N loading to streams but less is known about the impacts of residential development. Here we consi...

متن کامل

Stream Nitrate Response to Different Burning Treatments in Sout Ern Appalac Ian Forests

Southern Appalachian forests are undergoing considerable change due to altered disturbance regimes. For example, fire exclusion has had a major impact on the structure and function of pine-hardwood ecosystems. Recently, fire has been prescribed for a variety of applications: 1) stand-replacement in the form of a mimicked wildfire, 2) site-preparation as part of a fell-and-burn prescription, and...

متن کامل

Plant uptake and stream chemistry set global bounds on nitrogen gas emissions from humid tropical forests

Denitrification and hydrologic leaching are the two major pathways by which nitrogen is lost from the terrestrial biosphere. Humid tropical forests are thought to dominate denitrification from unmanaged lands globally, but there is large uncertainty about the range and key drivers of total N gas emissions across the biome. We combined pantropical measures of small watershed stream chemistry wit...

متن کامل

Recovery of nitrogen pools and processes in degraded riparian zones in the southern appalachians.

Establishment of riparian buffers is an effective method for reducing nutrient input to streams. However, the underlying biogeochemical processes are not fully understood. The objective of this 4-yr study was to examine the effects of riparian zone restoration on soil N cycling mechanisms in a mountain pasture previously degraded by cattle. Soil inorganic N pools, fluxes, and transformation mec...

متن کامل

Identifying Priority Areas for Riparian Rehabilitation to Minimise Nitrate Delivery to Streams

Surface water and groundwater systems are connected with the head gradient between the river and the nearby aquifer controlling the magnitude and direction of the exchange flux between the two systems. The direction of the flux dictates whether the river gains water from the nearby aquifer, or loses water to it. The exchange between groundwater and rivers is a key component influencing not only...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 49 10  شماره 

صفحات  -

تاریخ انتشار 2002